Группа геошколы ВКонтакте  |   Форум ГШ на сервере "Всё о геологии" | Сообщество геошколы в LiveJournal
"Геология учит нас заглядывать в глубь времен".
В.А.Обручев
  
 

ГАЗОВЫЕ ГИДРАТЫ

Ю. А. Дядин, А. Л. Гущин. Новосибирский Государственный Университет
Опубликовано в Соросовском Образовательном Журнале, N3, 1998, cтр.55-64

Оглавление


Полости- многогранники в водных клатратных каркасах
Рис. 4. Полости- многогранники в водных клатратных каркасах (в вершинах многогранников расположены центры атомов кислорода, ребро является водородной связью; взаимосвязь между числом вершин (V), граней (F) и ребер (Е) в выпуклых многогранниках дается формулой Эйлера:V+F=E+2).

Полости. Тетраэдрическая координация и гибкость Н-связи по длине и углу позволяют строить из молекул воды рыхлые и близкие по энергии структуры, из которых наиболее устойчивой при обычных условиях является структура льда Ih (обычный лед). В ней все длины связей и углы между ними практически одинаковы и равны 2,76 angstr.gif (128 bytes) и 109,5°. Но, несмотря на связанный с этим очень низкий для твердого тела коэффициент упаковки1 (k = 0,43; напомним, что при плотнейшей упаковке шарообразных молекул одного размера k = 0,74), полости в этой структуре невелики и могут включать в себя разве лишь такие малые молекулы, как Н2 и Не. При небольших искажениях длины Н-связей и углов между ними может сравнительно с небольшими потерями энергии образоваться еще ряд структур, как более плотных, чем лед Ih (льды высокого давления), так и более рыхлых (клатратные каркасы). Эти каркасные структуры в большинстве своем имеют полиэдрическое строение. Самым выгодным полиэдром является пентагондодекаэдр, так как угол в нем между Н-связями (108°) мало отличается от тетраэдрического и даже ближе к валентному углу в 104,5°,характерному для молекул воды в свободном состоянии. Тем не менее в клатратных каркасах D-полость, из-за наличия в ней оси пятого порядка, что не позволяет ей полностью заполнять пространство, вынуждена сочетаться с энергетически менее выгодными полостями. Из них наиболее часто встречаются 14- и 16-гранные полости, реже - 15- и 20-гранники с 12 пентагональными и 2, 4, 3, 8 гексагональными гранями соответственно. Эти полости часто условно называют большими полостями в отличие от додекаэдра и D'-полости, называемых малыми полостями (рис. 4, табл. 1).   

Таблица 1. Типы полостей-полиэдров, встречающихся в водных клатратных каркасах.
Типы полостей-полиэдров, встречающихся в водных клатратных каркасах

Клатратные каркасы. Известно больше полутора десятка клатратных каркасов [7]. Среди них в газовых гидратах найдены такие клатратные каркасы, как КС-I, КС-II, ГС-III и ТС-I, информация о которых представлена в табл. 2.
    Структурный фрагмент КС-I на примере гидрата метана изображен на рис. 5, а (количественную информацию см. в табл. 1, 2). Колонки из спаренных по гексагонам Т-полостей (помещенные в них молекулы метана окрашены в зеленый цвет) расположены параллельно ребрам куба, соединяясь между собой плотнейшим образом пентагональными гранями. Оставшееся пространство между колонками представляет собой пентагондодекаэдрическую D-полость (расположенные в них молекулы метана окрашены в голубой цвет). Таким образом, в КС-I только два типа полостей: большие Т- и малые D-полости в соотношении 3 : 1 (обозначения см. в табл. 2). Центральный додекаэдр развернут на 90° по отношению к додекаэдрам в вершинах. Гидратное число (стехиометрию) при полной занятости одним гостем (G) всех полостей - а также только больших полостей - легко получить из формулы элементарной ячейки (отношение числа молекул воды к общему числу полостей, занятых одним гостем). Приблизительно в такой последовательности можно описать и остальные водные клатратные каркасы [7].
Серьезный вклад в структурные исследования клатратных гидратов внесли работы американского ученого Г. Джеффри с сотрудниками, которые изучали гидраты пералкилониевых солей, оказавшиеся родственными газовым гидратам. Ими были описаны еще несколько структур. К одной из них, тетрагональной I (ТС-I), отнесен гидрат брома Вr2*8,6H2О. Хозяйский каркас этой структуры состоит из трех видов полостей: D, T и P в соотношении 5 : 8 : 2 (см. табл. 1, 2). Существует обширный изотипизм среди каркасных структур воды (как плотных, так и клатратных) и кристаллических фаз кремнезема, кремния и германия в силу тетраэдрической координации всех этих частиц. Так, для Si была найдена КС-I, а для Ge - КС-II со щелочными металлами Na и К в качестве компонентов-гостей соответственно. Хозяйские решетки, аналогичные водным каркасам КС-I и КС-II, были открыты впоследствии на клатрасилах (меланофлогит и додекасил-3С соответственно). И наоборот, на клатрасилах в 1984 году была найдена гексагональная структура Н (додекасил-IH), аналогов которой среди газовых гидратов не было.

Таблица 2. Водные клатратные каркасы, найденные среди газовых гидратов.
Водные клатратные каркасы, найденные среди газовых гидратов

   Но в 1987 году канадский ученый Дж. Рипмеестер с сотрудниками, изучая структуры клатратных гидратов (в качестве основных гостевых компонентов ими были использованы такие достаточно объемные молекулы, как метилциклогексан, пинаколин, и малые - Хе, H2S в качестве вспомогательных газов), установили, что в этих случаях образуются изотипные додекасилу-IH клатратные гидраты. Элементарная ячейка такой структуры состоит из большой двадцатигранной полости Е, на которую приходится пять малых полостей: две D' и три D (см. табл. 1, 2). Эта структура обозначается как гексагональная III (ГС-III) или структура Н, как ее назвали авторы (рис. 6).
1.  , где - суммарный объём всех молекул, составляющих фазу с объёмом V.

Назад| Следующая страница

Rambler's Top100
История ГШ   Расписание занятий    Директора ГШ   Все преподаватели ГШ Все выпускники ГШ   План работы на текущий год
© Геологическая Школа МГУ 2003-2015
Проект осуществляется при поддержке:
Сервера "Всё о геологии": Энциклопедия ГеоВики,
Геологические конференции, Каталог геологических сайтов
 
О работе школы пишите school@geol.msu.ru
О работе сайта geoschool.msu@gmail.com


код нашего баннера
_