- 5. Camacho A., James K.W. Lee, Bastiaan J., Hensen & Jeen Braun. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature, 2005. Vol. 435. P. 1191-1196.
- 6. Cohen AS., O'Nions RK., Siegenthaler R., Griffin WL. Chronology of the pressure-temperature history recorded by a granulite terrain. Contributions to Mineralogy and Petrology, 1988. Vol. 98. P. 303-311.
- Krogh Ravna E. The garnet-clinopyroxene Fe²⁺-Mg geothermometer: an updated calibration. Journal of metamorphic Geology, 2000. Vol. 18. P. 211– 219.

ИЗОМОРФИЗМ И ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В КАРБОНАТАХ СО СТРУКТУРАМИ КАЛЬЦИТА И АРАГОНИТА

Добрецова Елена Анатольевна

Геологический ф-т МГУ, Москва

Методом инфракрасной спектроскопии и электронно-зондового анализа исследована серия природных карбонатов со структурными типами (СТ) кальцита и арагонита. ИК-спектры поглощения образцов были сняты на инфракрасном Фурье спектрометре ФСП-1201 методом тонкодисперсных пленок на подложке КВг в диапазоне частот 1800-400 см⁻¹. Анализы химического состава проведены на электронном микрозонде Cameca SX-50.

Рис. 1 Формы нормальных колебаний плоских атомных группировок TO₃

Нормальные колебания четырехатомной молекулы (ТО₃) в форме правильного треугольника с симметрией D_{3h} (62*m*) представлены на рис. 1 [1]. v_1 и v_3 соответствуют симметричному И асимметричному валентным, а v_2 и v_4 – симметричному и асимметричному деформационным колебаниям. Колебание v₁ описывается типом симметрии А₁'. Это колебание симметрично относительно оси 3. горизонтальных осей 2 И горизонтальной плоскости m. Колебанию v2 отвечает тип симметрии А2". Это колебание асимметрично относительно осей 2 и горизонтальной плоскости т. Два колебания v3 и v4 -

дважды вырожденные. Так как они симметричны относительно горизонтальной плоскости m, то это колебания E'. В таблице 1, составленной с использованием данных [2], представлен переход от симметрии правильного треугольного иона

симметрии D_{3h} к группам симметрии иона CO₃ в кристаллах кальцита, доломита и арагонита.

Таблица 1.

Корреляционная таблица типов симметрии колебаний для точечных групп D_{3h} , D_3 , C_3 и C_s .

Точечная группа	ν_1	v_2	V ₃	ν_4
D_{3h}	А1'(н.а.)*	A2"	E'	E'
D_3	А ₁ (н.а.)	A_2	E	E
C ₃	А	А	Е	E
Cs	A'	A"	A'+A'	A'+A'

*Примечание: н.а. – колебание, не активное в ИК спектре

Пространственная группа кальцита R3c, фактор-группа D_{3d} , группа позиционной симметрии иона $CO_3 - D_3$ (32). Из таблицы видно, что никаких изменений правил отбора при этом переходе не происходит. Полносимметричное колебание A_1 ' или A_1 не активно в ИК-спектре.

На рис. 2 представлены ИК-спектры минералов со СТ кальцита и арагонита. спектре магнезита (рис. 2.1) наиболее интенсивная В И высокочастотная полоса 1460 см⁻¹ соответствует валентному асимметричному колебанию $v_3(E)$. Колебание $v_1(A')$ не активно в ИК-спектре. Полосы 887 и 747 cm^{-1} отвечают соответственно симметричному (v₂) и асимметричному (v₄) деформационным колебаниям. При увеличении ионного радиуса катионов Мg→Zn→Fe→ Mn→Ca происходит закономерный сдвиг полос к меньшим частотам. Особенно это заметно на асимметричном валентном v₃ и асимметричном деформационном v₄ колебаниях. Так в магнезите MgCO₃ значения колебаний v₃ и v₄ соответственно равны 1460 и 747 см⁻¹, в смитсоните ZnCO₃ - 1443 и 745 см⁻¹, в сидерите FeCO₃ - 1433 и 735 см⁻¹, в родохрозите MnCO₃ - 1424 и 725 см⁻¹, в кальците CaCO₃ - 1418 и 708 см⁻¹. Таким образом по положению полос в ИК-спектрах можно проследить характер изоморфных замещений в этих структурах (Табл. 2).

В структуре доломита CaMg(CO₃)₂ происходит послойное упорядочение атомов Ca и Mg и пространственная группа понижается до $R\bar{3}$, фактор-группа C_{3i} , группа позиционной симметрии иона CO₃ - C_3 . В этой группе вырождение колебаний v₃ и v₄ сохраняется, но становится активным колебание v₁ (A) (Табл.1). Однако в ИК-спектре доломита полоса v₁ колебаний не проявляется, его спектр подобен спектру минералов со структурой кальцита и отличается лишь некоторыми изменениями частот колебаний (рис.2.6).

Пространственная группа арагонита *Ртсп*, фактор-группа D_{2h} , группа позиционной симметрии иона $CO_3 - C_s$ (*m*). Как видно из таблицы 1, в группе кальцита число колебаний иона CO_3 не изменяется по сравнению с правильным треугольным ионом в симметрии D_{3h} . В ромбической группе арагонита

47

становится активным колебание v_1 , неактивное в группе кальцита. Вырожденное колебание $E(v_3, v_4)$ расщепляется на 2 невырожденных A'.

В спектре арагонита (рис. 2.7) наблюдается новая по сравнению со спектрами минералов группы кальцита полоса симметричного валентного колебания v₁ (*A*') 1051 см⁻¹ и расщепление полосы v₄ колебания. Из-за близкого

Рис. 2. ИК-спектры минералов: 1.магнезита, 2. смитсонита, 3. сидерита, 4. родохрозита, 5. кальцита, 6. доломита, 7. арагонита, 8 церуссита

расположения двух полос V3 колебания они перекрываются и дают одну широкую полосу с максимумом 1472 см⁻¹. Так же, как и в спектрах минералов со структурой кальцита, в ИК-спектрах минералов этой группы происходит понижение частот колебаний при переходе от арагонита к церусситу. Благодаря гораздо большему размеру ионного радиуса Pb (r=1,19) по сравнению с Са (r=1,01) в спектре церуссита наблюдается значительный слвиг полос к меньшим частотам (Табл. 2, рис. 2.8). Если в спектре арагонита полоса колебания v_3 (1472 см⁻¹) не была расщеплена, то в церуссите это расщепление наблюдается:1429 и CM^{-1} . 1385 как И предсказано анализом колебаний в табл. 1. Вместе с тем, расщепление полосы v₄ колебания не проявляется.

Таблица 2. Волновые числа полос колебаний в ИК-спектрах минералов со СТ кальцита и арагонита (см⁻¹).

	Формулы минералов										
	MgCO ₃	ZnCO ₃	FeCO ₃	MnCO ₃	СаСО ₃ Кальцит	CaMg(CO ₃) ₂	СаСО ₃ Арагонит	PbCO ₃			
v ₃	1460	1443	1433	1424	1418	1455	1472	1429 1385			
v_1	-	-	-	-	-	-	1082	1051			
v_2	887	870	866	864	874	880	858	839			
v_4	747	745	735	725	708	725	712 698	677			

48

Материалы с сайта "Всё о Геологии" http://geo.web.ru/

Итак, минералам, относящимся к структурным типам кальцита и арагонита и кристаллизующимся в двух разных пространственных группах, отвечают два разных типа спектров, по которым можно изучать полиморфные модификации CaCO₃. Внутри каждой группы минералов можно рассматривать изоморфные замещения по смещению полос при изменении ионных радиусов катионов.

Литература:

- 1. Куражковская В.С., Боровикова Е.Ю. Инфракрасная и мессбауэровская спектроскопия.. М.:МГУ, 2008, 98 с.
- 2. Farmer V.C. Infrared spectra of minerals. L.:Mineral. Soc., 1974. 538 p.

ФАЗОВЫЕ ОТНОШЕНИЯ В МАНТИЙНЫХ ПАРАГЕНЕЗИСАХ С УЧАСТИЕМ NA-СОДЕРЖАЩЕГО МЭЙДЖОРИТОВОГО ГРАНАТА

Дымшиц Анна Михайловна

Геологический ф-т МГУ, Москва, <u>anett1987@yandex.ru</u>

Натрийсодержащие мэйджоритовые гранаты широко распространены в виде включений в алмазах из кимберлитовых трубок и россыпей большинства алмазоносных провинций мира [12]. Особый интерес исследователей к этим гранатам связан с их способностью сохранять структуру при подъеме с больших глубин, отражая признаки мантийных давлений в особенностях своего состава.

Ha сегодняшний большинство Na-содержащих день находок мэйджоритовых гранатов относится к эклогитовому типу и, в отличии от перидотитового характеризуются достаточно низкими содержаниями Cr (до 0,1 ф.е.) и Al (1,5–1,9 ф.е.) [9,10], при достаточно высоких, до 3.5 ф.е., содержаниях Si. Показательной оказывается устойчивая примесь Na, значения которой могут достигать 0,16 ф.е. (1,08 мас. % Na₂O) [8]. Обычно, находки Na-содержащих гранатов характеризуются более умеренными содержаниями Si (до 3,25 ф.е.) и Na (0,05–0,08 ф.е.), что в сою очередь, может быть результатом распада твердого раствора граната, с образованием типичной эклогитовой ассоциации [6]. Еще одним доказательством этому служат натрийсодержащие мэйджоритовые гранаты ассоциирующие с калиевыми омфацитами, для которых содержания К₂О могут достигать 1,2-1,5 мас. % [10]. Эти данные указывают на высокую щелочность расплавов, из которых образуются алмазы с такими включениями, что подтверждается находками кристаллов алмаза с сингенетическими флюидными включениями, имеющими широкий диапазон составов – от водносиликатных до щелочно-карбонатных и хлоридных [7].

Данная работа включает в себя компьютерное моделирование NaGrt (Na₂MgSi₅O₁₂) (Университет Гёте, Франкфурт-на-Майне), а также изучение фазовых отношений и синтез Na-содержащих мэйджоритовых гранатов в

Материалы с сайта "Всё о Геологии" <u>http://geo.web.ru/</u>